Learning builds on learning: Infants' use of native language sound patterns to learn words

Katharine Graf Estes

Department of Psychology, University of California, Davis, Davis, CA 95615, USA

ARTICLE INFO

Article history:
Received 22 February 2014
Revised 23 May 2014
Available online 4 July 2014

Keywords:
Word learning
Statistical learning
Phonological development
Phonotactics
Word segmentation
Infancy

ABSTRACT

The current research investigated how infants apply prior knowledge of environmental regularities to support new learning. The experiments tested whether infants could exploit experience with native language (English) phonotactic patterns to facilitate associating sounds with meanings during word learning. Infants (14-month-olds) heard fluent speech that contained cues for detecting target words; the target words were embedded in sequences that occur across word boundaries. A separate group heard the target words embedded without word boundary cues. Infants then participated in an object label learning task. With the opportunity to use native language patterns to segment the target words, infants subsequently learned the labels. Without this experience, infants failed. Novice word learners can take advantage of early learning about sounds to scaffold lexical development.

© 2014 Elsevier Inc. All rights reserved.

Introduction

A fundamental process in language acquisition is to map the sounds of words to their meanings. This requires forming a sound representation and a meaning representation and then linking the two. Acquiring new words is a formidable task for novice language learners. Initially, vocabulary acquisition proceeds slowly and effortfully. By 2 years of age, infants typically become skilled and efficient word learners (Bloom, 2000; Fenson et al., 2007; McMurray, 2007). Essential to this developmental progression is the way that learning builds on prior learning. Infants must detect the environmental cues that are available to support word learning and must learn how to effectively exploit these cues.

E-mail address: kgrafestes@ucdavis.edu

http://dx.doi.org/10.1016/j.jecp.2014.05.006
0022-0965/© 2014 Elsevier Inc. All rights reserved.
Infants’ experiences shape how they learn, a process that is illustrated by the acquisition of the shape bias in word learning. One key task in word learning is to determine the range of items that a new word refers to. Smith and colleagues proposed that infants use consistent patterns in their environments to solve this problem (e.g., Samuelson & Smith, 1999; Smith, 2000; Smith, Colunga, & Yoshida, 2010). One such pattern is that the object categories and names that infants encounter tend to be organized around shape (Gershkoff-Stowe & Smith, 2004; Samuelson & Smith, 1999; Smith, Jones, Landau, Gershkoff-Stowe, & Samuelson, 2002); for example, within the categories of balls and cups, items not only share a label but also have similar shapes. When infants learn the shared name for items within a category, they have the opportunity to detect this name–shape relation. Moreover, when infants perform the larger scale generalization that “___s are ____-shaped” (Smith et al., 2002, p. 14), they can infer how new object names map onto entire groups of items with the same shape. Importantly, the experience of learning the names for many shape-based categories induces the shape bias; the shape bias, in turn, produces more efficient vocabulary acquisition (Smith et al., 2002). In fact, the shape bias can be induced in the laboratory by enriching infants’ experience with shape-based categories. Following this enrichment, infants experience accelerated vocabulary growth (Smith et al., 2002). Learning about environmental patterns creates changes in how infants approach new learning problems.

The shape bias demonstrates how infants can detect a cue to structure in their environments and then apply the cue to promote further learning—how learning begets learning. In this case, the information helps infants to focus on the appropriate meanings for new words. Here, we ask whether the same general mechanism operates when infants learn about the sound sequences that form potentially meaningful units in the ambient language. How do infants identify the sound sequences in fluent speech that correspond to individual words that can be associated with meanings? A substantial literature has established that infants learn a remarkable amount about native language sound structure even before they start to produce their first words (reviewed in Saffran, Werker, & Werner, 2006). The next crucial step is to determine how infants apply this learning about linguistic sounds to learn new words.

A significant challenge in forming sound representations is to segment individual words from fluent speech. Before a listener has a substantial vocabulary, it is difficult to identify where each word starts and stops because the speech signal lacks reliable acoustic word boundary markers (Brent, 1999). However, the ability to segment fluent speech is essential for word learning because one cannot associate a word with its meaning unless the word has been identified. The linguistic environment provides infants with patterns that they can use to solve this problem (see reviews in Brent, 1999; Jusczyk, 1999). One source of information for segmenting words comes from phonotactic patterns, which include the frequency with which phonemes and phoneme combinations occur in a given language as well as the frequency with which they occur at particular word positions. Phonotactic information marks word boundaries because, in a given language, some phonemes do not occur at certain word positions or do not occur within words in certain combinations. For example, English words do not begin or end with the consonant cluster /vt/. When a listener encounters this sequence, knowledge of English phonotactics should suggest how to parse the utterance; thus, the phrase “give to” is heard as /gIv tu/, not /gIv tu/ or /gI vtu/. Accordingly, adults identify words in fluent speech more rapidly when phonotactic word boundary cues are present than when they are absent (McQueen, 1998).

Thus, infants’ linguistic input provides cues to cohesive word units just as it provides cues to shape-based category structures. In both cases, learners must detect the regularities in the input in order to take advantage of them to promote further learning. During early language acquisition, there is evidence of sensitivity to phonotactics. Mattys and Jusczyk (2001) reported that infants can use phonotactics to detect words. In their experiment, 9-month-olds listened to target words embedded in sentences with good phonotactic cues to word boundaries. That is, at word onset and word offset, the target words were embedded in phoneme combinations that do not tend to occur within English words but do occur across word boundaries. During testing, infants listened longer to repetitions of the target words than to novel words, suggesting that they recognized the target words when presented in isolation. When infants heard target words embedded in sentences without phonotactic segmentation cues, they did not seem to recognize the words but rather treated them like entirely novel words (i.e., they showed no listening preference). Although listening preferences do not demonstrate...
that infants have extracted cohesive word-like units per se, this pattern of results does suggest that
the infants detected the target words in the supportive phonotactic context but not when the phono-
tactic information was unavailable.

The ability to detect words in fluent speech, using phonotactics or other cues, is a crucial skill for
language acquisition. In support of this notion, Newman, Ratner, Jusczyk, Jusczyk, and Dow (2006)
found that infants' early word segmentation abilities are associated with later language development.
Infants (7.5- to 12-month-olds) initially participated in word segmentation tasks that incorporated a
variety of segmentation cues such as prosody and phonotactics. At 2 years of age, toddlers who
showed successful segmentation as infants had larger vocabularies than those who had not segmented
as infants. Infant word segmentation performance was also related to vocabulary and syntax at 4 to
6 years of age. These findings suggest that word segmentation ability lays a foundation for subsequent
language development (see also Singh, Reznick, & Xuehua, 2012). Children who have difficulty in iden-
tifying words in fluent speech may find it challenging to associate meanings with new words and to
learn how words function in sentences.

The preceding discussion indicates that phonotactic information is a valuable environmental cue
for finding words, infants can detect this cue, and early segmentation ability is a fundamental skill
for language acquisition. However, the extant literature does not reveal precisely how infants use pho-
notactic information. That is, does phonotactic information help infants to associate sounds with
meaning to acquire new words? Previous experiments have shown that lab-based experience with
artificial language materials can promote word learning (Graf Estes, Evans, Alibali, & Saffran, 2007;
Lany & Saffran, 2010, 2011), but we do not yet know how experience with naturally occurring phono-
tactic patterns affects the process of associating sounds with meanings. As with the shape bias, sen-
sitivity to this environmental regularity may facilitate word learning. The phonotactic patterns that
occur within versus across word boundaries can be used to segment individual words from continuous
speech and then form sound sequence representations that are readily available to be mapped to
meanings.

The goal of the current experiments was to investigate how infants integrate prior experience with
naturally occurring environmental regularities to support subsequent learning. Specifically, we
examined how novice word learners apply knowledge of native language sound patterns to support
the process of associating sounds with meanings. To address this issue, Experiment 1 first established
a set of object labels that 14-month-olds did not readily learn in the absence of supporting information
about the sounds of the labels. Experiment 2 examined whether infants would learn those object
labels when they first had the opportunity to use phonotactic word boundary cues to segment the
target words.

Experiment 1

The purpose of Experiment 1 was to determine a pair of object labels that 14-month-olds do not
readily learn in order to use this pattern as a baseline for Experiment 2. A version of the Switch task
(Werker, Cohen, Lloyd, Casasola, & Stager, 1998) was used to measure object label learning in both
experiments. In the Switch task, infants first habituate to two label–object pairings. They then view
test trials in which the original pairings are switched as well as trials in which the original pairings
are maintained. If infants learned the associations between the labels and objects, they should look
longer during the switched trials.

In establishing the Switch task as a measure of object label learning, Werker and colleagues (1998)
reported that 14-month-olds can associate phonetically distinct labels with a pair of objects. Import-
antly, although this finding has been replicated (Byers-Heinlein, Fennell, & Werker, 2013), there is
also substantial evidence that object label learning in novice word learners (i.e., infants under
18 months of age) is fragile. For example, Chan and colleagues (2011) found that 14-month-olds failed
to learn labels in the Switch task when the objects were presented by a (video-recorded) woman per-
forming actions with them. Even older infants (17-month-olds) can fail to associate words with
objects in the absence of some kind of supporting information such as an infant-directed speaking
style (Graf Estes & Hurley, 2013). The evidence is even more mixed in younger infants. Werker and
colleagues (1998) found that 12-month-olds failed to learn object labels in the Switch task, but MacKenzie and colleagues (MacKenzie, Curtin, & Graham, 2012; MacKenzie, Graham, & Curtin, 2011) reported successful learning of other labels at this age. A series of experiments from Hollich and colleagues (2000, Experiments 4–9) suggested that 12-month-olds require multiple social referential cues during labeling to learn new object names, cues that are absent in the Switch task. Thus, the literature on early word learning suggests that although infants do learn effectively in many circumstances, the ability is fragile, particularly at young ages.

The current experiments used a variation of the Switch task that has been found to be difficult for infants in previous studies. With the general parameters used here, even 17-month-olds failed to learn label–object associations unless they heard the labels in infant-directed prosody (Graf Estes & Hurley, 2013) or they previously had artificial language segmentation experience (Graf Estes et al., 2007). Across experiments, the labels were gaffe and tove, taken from the phonotactic segmentation task that Mattys and Jusczyk (2001) designed. We anticipated that under these conditions, infants would fail to respond to the label–object associations. It is a little unconventional to begin by predicting that infants will fail to learn. However, because the ultimate goal was to show the facilitative effect of phonotactic information, it is important to provide this failure as a baseline. In addition, one of our overarching assumptions is that forming such associations early in lexical development is hard and, therefore, it is important to have demonstrations of both success and failure.

Method

Participants

A sample of 18 infants (10 girls and 8 boys) participated in Experiment 1 (mean age = 14.3 months, range = 13.7–15.3). All infants were born full term and had no history of hearing impairments or chronic ear infections. All infants came from English-speaking homes. Additional infants were excluded from analyses due to fussiness (e.g., crying, repeatedly trying to leave parent’s lap; \(n = 13 \)), excessive movement (\(n = 1 \)), or being distracted by an object in the test booth (\(n = 3 \)). Before conducting the significance tests reported below, 1 additional infant was identified as an outlier (mean looking time difference score more than 2 standard deviations from the mean) and was excluded from analyses.

Stimuli

A female native English speaker recorded tokens of the target words gaffe /gæf/ and tove /tov/ to be used as object labels. She produced them in isolation with infant-directed prosody. There were four tokens of each label separated by 750 ms of silence and repeated in a loop. The program Praat (Boersma & Weenink, 2010) was used to measure the amplitude, fundamental frequency (F0, a measure of pitch), and duration of the labels. The values are reported in Table 1.

As shown in Fig. 1, two novel objects were paired with the labels. The items were images of three-dimensional objects that differed in shape and color. Object 1 was displayed at 5.1 \(\times \) 6.4 inches, and Object 2 was displayed at 6.6 \(\times \) 5.9 inches. Each object bounced in an arc within a white rectangle (40.4 \(\times \) 24.5 inches) at the center of the screen. The surrounding area of the 42-inch (diagonal) television screen was dark.

Procedure

Each infant sat on a parent’s lap approximately 3 feet from a large-screen television with integrated speakers. To prevent bias, the parent listened to music over headphones and the experimenter controlled the experiment from a separate booth, blind to the identity of the stimuli being presented.

\[1\] There was a high dropout rate due to fussiness in Experiments 1 and 2. This could bias the results toward infants with relatively long attention spans. Our conclusions may be based on a sample that is not typical of all 14-month-olds. However, the dropout rate in the current experiments is similar to the rates in prior experiments using versions of the Switch task with 14-month-olds (Fennell, Byers-Heinlein, & Werker, 2007; Fennell & Waxman, 2010; Werker, Fennell, Corcoran, & Stager, 2002). Thus, the current sample of infants may be comparable to the samples in prior experiments—including many experiments that have influenced understanding of early label learning.
The program Habit X (Cohen, Atkinson, & Chaput, 2004) was used to control stimuli presentation and record looking time in a version of the Switch task. Although the Switch task does not measure the full range of referential understanding that word knowledge entails, it taps a key process in word learning—associating word form representations with meaning representations.

The infant first viewed a familiarization trial, intended to provide experience with the audiovisual stimulus presentation before the first habituation trial. A computerized image of a small rotating gray screen appeared on the television while repetitions of the nonword *neem* played.

Following the familiarization trial, the habituation trials began. At the start of each trial, a cartoon played to capture the infant’s attention. When the infant looked at the screen, one of the label–object pairings played; it continued until the infant looked away from the screen for at least 1 s or after a maximum of 20 s. The two label–object pairings were presented one at a time, randomized by blocks, until the infant habituated. The habituation criterion was met when the infant’s average looking time across 3 trials decreased to 50% of his or her average looking time across the first 3 trials.

The test trials started immediately after the infant habituated or viewed a maximum of 25 habituation trials. There were two types of test trials. During *same* trials, the infant viewed the original label–object pairings. During *switch* trials, the original label–object pairings were switched (e.g., Object 1 was paired with Label 2). If infants learned the original label–object associations, they should look longer during the switch test trials when those associations were violated. The dependent variable was the looking time difference score, calculated as mean looking duration during switch trials minus same trials. A positive value indicates greater attention to the switch test trials.

Table 1

<table>
<thead>
<tr>
<th></th>
<th>Amplitude in dB [M (SD)]</th>
<th>Pitch (F0) in Hz [M (SD)]</th>
<th>Duration in ms [M (SD)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Object labels</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Experiments 1 and 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gaffe</td>
<td>78 (65)</td>
<td>302 (22)</td>
<td>757 (70)</td>
</tr>
<tr>
<td>Tove</td>
<td>77 (79)</td>
<td>309 (27)</td>
<td>972 (141)</td>
</tr>
<tr>
<td>Fluent speech passages</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Experiment 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Good cues condition</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Target word</td>
<td>73 (4.4)</td>
<td>263 (60)</td>
<td>336 (78)</td>
</tr>
<tr>
<td>Preceding word</td>
<td>75 (2.5)</td>
<td>292 (53)</td>
<td>404 (91)</td>
</tr>
<tr>
<td>Following word</td>
<td>72 (2.9)</td>
<td>218 (37)</td>
<td>447 (184)</td>
</tr>
<tr>
<td>Poor cues condition</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Target word</td>
<td>73 (3.0)*</td>
<td>267 (53)</td>
<td>365 (55)</td>
</tr>
<tr>
<td>Preceding word</td>
<td>74 (2.9)</td>
<td>311 (44)</td>
<td>387 (63)</td>
</tr>
<tr>
<td>Following word</td>
<td>70 (2.5)*</td>
<td>237 (39)</td>
<td>386 (76)</td>
</tr>
</tbody>
</table>

Note. For the Experiment 2 fluent speech stimuli, acoustic analyses are reported for the target words and the words immediately preceding and following the targets. Items marked with a superscript lowercase letter “a” or “b” differed by \(p < .05 \).

Fig. 1. Novel objects that received labels. Object 1 was labeled *tove*, and Object 2 was labeled *gaffe*. The program Habit X (Cohen, Atkinson, & Chaput, 2004) was used to control stimuli presentation and record looking time in a version of the Switch task. Although the Switch task does not measure the full range of referential understanding that word knowledge entails, it taps a key process in word learning—associating word form representations with meaning representations.

The infant first viewed a familiarization trial, intended to provide experience with the audiovisual stimulus presentation before the first habituation trial. A computerized image of a small rotating gray screen appeared on the television while repetitions of the nonword *neem* played.

Following the familiarization trial, the habituation trials began. At the start of each trial, a cartoon played to capture the infant’s attention. When the infant looked at the screen, one of the label–object pairings played; it continued until the infant looked away from the screen for at least 1 s or after a maximum of 20 s. The two label–object pairings were presented one at a time, randomized by blocks, until the infant habituated. The habituation criterion was met when the infant’s average looking time across 3 trials decreased to 50% of his or her average looking time across the first 3 trials.

The test trials started immediately after the infant habituated or viewed a maximum of 25 habituation trials. There were two types of test trials. During *same* trials, the infant viewed the original label–object pairings. During *switch* trials, the original label–object pairings were switched (e.g., Object 1 was paired with Label 2). If infants learned the original label–object associations, they should look longer during the switch test trials when those associations were violated. The dependent variable was the looking time difference score, calculated as mean looking duration during switch trials minus same trials. A positive value indicates greater attention to the switch test trials.
Results and discussion

Infants habituated in an average of 11.67 trials (SD = 5.9) and 108.1 s (SD = 66). Two infants failed to meet the habituation criterion and viewed the maximum 25 habituation trials; the results are the same with these infants excluded. Fig. 2 shows infants’ mean looking time difference scores, and Table 2 reports mean looking times to same and switch test trials. A paired-samples t test revealed no difference between infants' looking time difference scores during Block 1 and those during Block 2, $t(17) = 1.17$, $p = .258$, $d = 0.42$; therefore, subsequent analyses were collapsed across blocks. To examine learning performance, a one-sample t test compared infants' looking time difference scores with zero, representing no difference in attention to same versus switch trials. It revealed that the scores did not differ significantly from zero, $t(17) = 1.33$, $p = .200$, $d = 0.31$. (In Fig. 2, data are shown separated by block for consistency with Experiment 2. We also confirmed that infants showed nonsignificant difference scores during Blocks 1 and 2, $p_s > .16$.) There was no evidence that infants noticed the switch test trials. In total, 10 infants displayed positive difference scores (longer looking to switch trials) and 8 infants displayed negative difference scores.

Because infants controlled the duration of their label exposure during habituation, we examined whether label learning performance correlated with attention during habituation. There were no significant correlations between looking time difference scores and trials to reach habituation ($r = .193$, $p = .444$) or time to reach habituation ($r = -.162$, $p = .552$). (For consistency with Experiment 2, we also examined the correlations specifically for Block 1. As in the overall analysis, there were no reliable correlations between difference scores and trials to reach habituation ($r = .184$, $p = .463$) or time to reach habituation ($r = .224$, $p = .373$).) Attention during habituation was not related to label learning performance.

In Experiment 1, 14-month-olds exhibited no evidence of learning the label–object pairings for gaffe and tove. From one perspective, this is not entirely surprising. The design of Experiment 1 was...
based on a task in which older infants have failed to learn labels without some form of supplemental support (Graf Estes & Hurley, 2013; Graf Estes et al., 2007; Hay, Pelucchi, Graf Estes, & Saffran, 2011). There is evidence from other variations of the Switch task that 14-month-olds (Byers-Heinlein et al., 2013; Werker et al., 1998) and even younger infants (12-month-olds: MacKenzie et al., 2011, 2012) can learn phonetically distinct object labels, but the task has revealed vulnerabilities in learning as well. For example, Werker and colleagues (1998) reported that 14-month-olds displayed learning only when objects moved during labeling, not when they were stationary. Chan and colleagues (2011) also found that 14-month-olds did not learn labels when the objects were being moved by a person.

Because word learning is an emerging process during the first months of the second year of life, many factors could push infants toward success or failure (Smith & Thelen, 2003; Thelen & Smith, 2006). For example, the Switch task in the current experiment differed from Werker and colleagues’ (1998) original test in several ways. The labels in Experiment 1 have fewer lexical neighbors (i.e., words that differ from a given word by a single phoneme) than the labels that Werker and colleagues used, namely lif and neem. Gaffe has 7 neighbors (calf, half, laugh, goof, gag, gang, and gas) and tove has 6 (dove, toad, toll, toe, tore, and stove), whereas lif has 15 neighbors (leaf, if, laugh, life, loaf, lick, lid, limb, lip, lit, lin, if, cliff, and lift) and neem has 9 (beam, seem, team, name, kneel, neat, need, niece, and knee) (calculations based on Storkel & Hoover, 2010). Thus, gaffe and tove may be less like infants’ experience with the sound patterns of other native language words, making them harder to acquire (Graf Estes & Bowen, 2013). In addition, the objects in Experiment 1 were two simple novel objects, each with a single color; the objects that Werker and colleagues used had greater variation in color, were more distinctive, and came from familiar categories (a dog and a truck). The novelty or discriminability of the objects could make the labels in the current experiment more difficult to learn.

Although it is beyond the scope of the current investigation to precisely identify all of the design features that affect infants’ performance in the Switch task, the variation in performance observed across studies illustrates the malleability of early word learning. Many kinds of manipulations can promote or prevent successful learning. What is key here is that Experiment 1 established a learning task that is difficult for 14-month-olds to master. This design could now be used to investigate how phonotactic information does (or does not) facilitate learning.

Experiment 2

Experiment 2 tested whether infants can exploit their prior experience with detecting sound structure in the ambient language to facilitate word learning. The design of the task was based on work by Graf Estes and colleagues (2007) showing that 17-month-olds connected statistical learning experience in an artificial language with object label learning (see also Lany & Saffran, 2010, 2011). In the current experiment, 14-month-olds first listened to (English) fluent speech passages based on the phonotactic word segmentation task conducted by Mattys and Jusczyk (2001). One group of infants listened to passages that contained good phonotactic cues to word boundaries for two target words; the target words were embedded in phoneme combinations that occur across word boundaries but not within words (the Good Cues condition). A second group of infants heard passages that contained poor phonotactic word boundary cues for the same target words; the words were embedded in phoneme combinations that tend to occur within words rather than across word boundaries (the Poor

<table>
<thead>
<tr>
<th>Table 2</th>
<th>Infants’ mean looking times (and standard deviations) (in s) to same and switch test trials in Experiments 1 and 2.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Block 1</td>
</tr>
<tr>
<td></td>
<td>Same trials</td>
</tr>
<tr>
<td>Experiment 1 No exposure</td>
<td>7.39 (2.8)</td>
</tr>
<tr>
<td>Experiment 2 Good cues</td>
<td>6.22 (4.4)</td>
</tr>
<tr>
<td>Poor cues</td>
<td>6.86 (4.0)</td>
</tr>
</tbody>
</table>
Cues condition). A key aspect of the design is that the phonotactic patterns were based on native language phonological regularities, not lab-based training. Infants must rely on their accumulated experience with phonotactics to take advantage of the cues. All infants then participated in the same label learning task in which the target words (*gaffe* and *tove*, identical to Experiment 1) acted as labels for novel objects. Importantly, in both conditions, the target words occurred with equal frequency before they acted as object labels. The difference was whether or not infants first heard good phonotactic cues for detecting the words before attempting to associate them with objects.

The hypothesis was that infants would use prior knowledge to support new learning. We predicted that infants would use knowledge of native language sound patterns to detect the new words in fluent speech and subsequently would use this information to support the process of mapping the words to objects. Specifically, we expected infants to show facilitation of learning only when they heard novel words embedded in passages that contained good phonotactic word segmentation cues. Phonotactic segmentation experience should promote the formation of strong phonological representations of individual words that are readily available for mapping to meanings. In contrast, we predicted that when the novel words were embedded in passages that contained poor phonotactic cues to word boundaries, it would be challenging for infants to detect the words and build representations of them. Robust word form representations would be unavailable; therefore, we expected infants to display difficulty learning, just as they did in Experiment 1 when they had no prior label exposure. In both the Good Cues and Poor Cues conditions, the passages provided the same amount of exposure to the words as well as some referential context because infants heard the labels across several sentences. However, only the Good Cues condition allowed infants to use language-specific patterns to scaffold the mapping process.

Method

Participants

A sample of 38 14-month-olds (19 girls and 19 boys) were randomly assigned to participate in the Good Cues condition (mean age = 14.4 months, range = 13.8–15.3; 9 girls and 10 boys) and the Poor Cues condition (mean age = 14.4 months, range = 13.7–15.1; 10 girls and 9 boys). Infants met the same inclusion criteria as in Experiment 1. All infants came from English-speaking homes, and 7 infants also heard a second language for approximately 16 h per week or less based on parental report (Good Cues condition $M = 5.9$ h, Poor Cues condition $M = 5.0$ h). The pattern of results is unchanged when these infants are excluded. Before performing the significance tests, 1 additional infant in the Good Cues condition was identified as an outlier (listening time difference score more than 2 standard deviations from the mean) and was excluded from the analyses. An additional 22 infants were excluded due to fussiness.

Stimuli

Phonotactic segmentation stimuli. Infants listened to passages that contained the target words *gaffe* and *tove*. The words were embedded in the sentences that Mattys and Jusczyk (2001) designed to test 9-month-olds’ use of phonotactics to detect words (see Table 3). Mattys and Jusczyk selected the phonotactic contexts based on an analysis of Bernstein’s (1982) corpus of child-directed speech performed by Mattys, Jusczyk, Luce, and Morgan (1999). They identified consonant–consonant (CC) combinations that were similar in overall frequency in English but differed in the likelihood that they occurred within words versus across word boundaries. The target words, *gaffe* and *tove*, were chosen to fit with the CC combinations to produce phoneme sequences with good or poor phonotactic cues for segmentation. In the Good Cues condition, the sequences were $X\, n$-*gaffe*-h X (/n gæf h/) and $X\, v$-*tove*-t X (/v tov t/); the X indicates syllables that end or begin with a given phoneme such as in the utterances “bean *gaffe* hold” and “live *tove* takes.” The sequences /ng/, /fh/, and /vt/ have low probability of occurring within words and high probability of occurring between words, which should facilitate the segmentation of the target words embedded in these sequences. In the Poor Cues condition, the sequences were $X\, ng$-*gaffe*-t X (/ŋ gæf t/) and $X\, f$-*tove*-n X (/f tov n/) as in the utterances “king *gaffe* tool” and “calf *tove* needs.” The sequences /ng/, /ft/, and /vn/ have low probability of occurring across word boundaries and high probability of occurring within words in English. These patterns do not
provide support for segmentation and could hinder individuation of the target words from the speech stream.

Based on these patterns, Mattys and Jusczyk (2001) created six-sentence passages for each target word in each condition. In the current experiment, infants listened to both target words in either the Good Cues or Poor Cues condition. They listened to the sentences in blocks—six *gaffe* sentences followed by six *tove* sentences—and these blocks were repeated. Infants were randomly assigned to start with the *gaffe* or *tove* passage.

The speaker from Experiment 1 recorded the sentences in an infant-directed speaking style. She was naive to the conditions of the phonotactics manipulation, and her script included foil sentences to mask the manipulation. To confirm that the target words and surrounding phonotactic contexts were pronounced accurately, six adult native English speakers listened to the passages. For each sentence, they transcribed the target word, the word preceding the target, and the word following the target. Scoring was based on the consonants in the target words and the consonants immediately surrounding the target words (i.e., the CC combinations that produced good or poor phonotactic word boundary cues). The mean percentage of consonants identified correctly was 98% in the Poor Cues condition and 97% in the Good Cues condition. These findings confirm that listeners largely heard the target words and phonotactic contexts as they were written.

We also performed acoustic analyses to examine whether the target words were more acoustically prominent in the Good Cues or Poor Cues condition. Table 2 shows the mean amplitude, pitch, and duration for the target words and the immediately preceding and following words. Comparisons between the target words and the surrounding words did not reveal any consistent patterns; the

<table>
<thead>
<tr>
<th>Table 3</th>
<th>Phonotactic segmentation stimuli for the Good Cues and Poor Cues conditions.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Good cues condition</td>
<td>Poor cues condition</td>
</tr>
<tr>
<td>Gaffe</td>
<td>Gaffe</td>
</tr>
<tr>
<td>The army is trying a new bean gaffe hold next week.</td>
<td>The army is trying a new fang gaffe tine next week.</td>
</tr>
<tr>
<td>The old pine gaffe house tends to break too often.</td>
<td>The old tong gaffe tends to break too often.</td>
</tr>
<tr>
<td>Of course, everyone knows the main gaffe hoist is worn.</td>
<td>Of course, everyone knows the king gaffe tool is worn.</td>
</tr>
<tr>
<td>A spun gaffe heads the list of new inventions.</td>
<td>A wrung gaffe tops the list of new inventions.</td>
</tr>
<tr>
<td>Still, some think that a stone gaffe hod is better.</td>
<td>Still, some think that a strong gaffe tin is better.</td>
</tr>
<tr>
<td>A lean gaffe hall is being used for now.</td>
<td>A hang gaffe tote is being used for the moment.</td>
</tr>
<tr>
<td>Tove</td>
<td>Tove</td>
</tr>
<tr>
<td>A brave tove trusts most forest animals.</td>
<td>A gruff tove knows most forest animals.</td>
</tr>
<tr>
<td>Few people know that a live tove takes so much care.</td>
<td>Not many people know that a calf tove needs so much care.</td>
</tr>
<tr>
<td>Some think that an eve tove twists old wheat stalks.</td>
<td>Some believe that a skiff tove nibbles old wheat stalks.</td>
</tr>
<tr>
<td>The mauve tove tree is hidden in the jungle.</td>
<td>The roof tove nest is hidden in the jungle.</td>
</tr>
<tr>
<td>Spies are interested in the dove tove territories.</td>
<td>Many scientists are interested in buff tove naval stories.</td>
</tr>
<tr>
<td>On sunny days, a groove tove tires very quickly.</td>
<td>On most sunny days, a leaf tove naps quickly.</td>
</tr>
</tbody>
</table>

target words were not consistently louder, higher pitched, or longer. The acoustic characteristics of the target words also did not differ across the phonotactic cue conditions. In addition, there was no difference in the duration of the very brief silences that sometimes occurred before and after the target words in the Good Cues passages \((M = 11 \text{ ms}, SD = 9) \) and Poor Cues passages \((M = 14 \text{ ms}, SD = 12) \).

Overall, the acoustic analyses did not reveal any supplemental word boundary cues.

The amplitude of the sentences was equalized using Adobe Audition. They were played at approximately 65 to 70 dB, as measured by a sound level meter at the infant’s location. The total duration of the segmentation phase was 1 min 40 s (100 s) in both conditions.

Object labeling stimuli. The labels and objects from Experiment 1 were used in Experiment 2.

Procedure

In Experiment 2, each infant first listened to passages of fluent speech that contained the target words while watching a soundless animated cartoon seated on a parent’s lap. Infants were randomly assigned to listen to passages in the Good Cues or Poor Cues condition. After listening to the speech stream, infants participated in the Switch task described in Experiment 1. All infants viewed the same label–object pairs. The key difference was whether they first heard the words in a context that presented good or poor phonotactic segmentation cues before the words served as object labels.

Preliminary tests indicated that there were no effects of sex or test order across the eight counterbalanced orders; therefore, analyses were collapsed across these variables.

Results and discussion

Infants in the Good Cues condition viewed a mean of 10.32 trials during habituation \((SD = 5.3) \), with a total time to habituate of 130.1 s \((SD = 100) \). Infants in the Poor Cues condition viewed 9.95 trials \((SD = 4.5) \), with a total time to habituate of 93.9 s \((SD = 33) \). There were no significant differences in number of trials to reach habituation, \(t(36) = 0.23, p = .820, d = 0.08 \), or time to reach habituation, \(t(36) = 1.49, p = .145, d = 0.54 \). One infant in each condition failed to habituate. The pattern of results is unchanged with these infants excluded.

To analyze infants’ learning performance, a 2 (Test Block: 1 vs. 2; within participants) \(\times 2 \) (Phonotactics Condition: Good Cues vs. Poor Cues; between participants) mixed-design analysis of variance (ANOVA) was conducted on infants’ looking time difference scores. Mean looking time difference scores are shown in Fig. 2, and the same and switch trial mean looking times appear in Table 2. There was no main effect of test block or phonotactic condition \((Fs < 1) \). However, there was a significant Test Block \(\times \) Phonotactic Condition interaction, \(F(1, 36) = 4.28, p = .046, \eta^2_g = .106 \). To probe the interaction, independent-samples \(t \) tests revealed that infants in the Good Cues condition had significantly larger looking time difference scores than infants in the Poor Cues condition during Block 1, \(t(36) = 2.31, p = .027, d = 0.76 \). The difference was not significant during Block 2, \(t(36) = -1.07, p = .294, d = 0.34 \). This analysis indicates that during the first test block, infants in the Good Cues condition showed greater differentiation of the same and switch test trials than infants in the Poor Cues condition.

To examine whether infants in each condition successfully learned the label–object pairs, we tested whether infants looked reliably longer to switch trials than to same trials. If so, looking time difference scores should be greater than zero. In the Good Cues condition, infants’ scores were significantly greater than zero during Block 1, single-sample \(t(18) = 3.50, p = .003, d = 0.80 \), with 15 of 19 infants displaying positive difference scores (longer looking to switch trials). During Block 2, the difference from zero was not significant, \(t(18) = -0.635, p = .534, d = 0.15 \), with 7 of 19 infants displaying positive difference scores. In the Poor Cues condition, looking time difference scores did not differ from zero during Block 1, \(t(18) = -0.343, p = .735, d = 0.08 \), or Block 2, \(t(18) = 0.858, p = .402, d = 0.20 \). During Block 1, 10 of 19 infants displayed positive difference scores; during Block 2, 12 of 19 infants displayed positive difference scores. In sum, during the first block of test trials, when attention was most tightly linked to experience during habituation, infants in the Good Cues condition displayed successful label learning via longer looking during test trials in which the original label–object pairings were violated. Infants in the Poor Cues condition did not show evidence of label learning.
In the Good Cues condition, the learning pattern revealed during the first test block did not persist during the second block. The change in response is not unprecedented or unanticipated. Although previous experiments have shown that greater attention to switch test trials does not change significantly over test blocks (Graf Estes et al., 2007; Graf Estes & Hurley, 2013), other studies have reported changes in infants’ sensitivity over the course of testing when the dependent measure relies on attential differences (Gerken, Wilson, & Lewis, 2005; Sahni, Seidenberg, & Saffran, 2010). With repeated exposure to novel test items, the novelty may decrease. As infants accumulate knowledge about the switch trials, they might no longer show strong differentiation between same and switch trials. The connection to the habituation trials decreases, and all trials become increasingly familiar. Thus, the first block of test trials may be the most sensitive to infants’ label learning skills. This is likely why infants in the Good Cues condition displayed successful learning only during Block 1, as shown in Fig. 2.

Because infants controlled the duration of label exposure during habituation, a set of correlations tested whether label learning performance and attention during habituation were related. The analyses focused on looking time difference scores during Block 1, the block when the strongest evidence of learning occurred. In the Poor Cues condition, the correlations between looking time difference scores and number of trials to reach habituation \((r = .297, p = .216) \) and time to reach habituation \((r = .310, p = .197) \) were not significant. In the Good Cues condition, there were also no significant correlations for trials to reach habituation \((r = .015, p = .951) \) or time to reach habituation \((r = .063, p = .798) \). (For consistency with Experiment 1, we also examined the correlations with looking time difference scores collapsed across test blocks. In the Good Cues condition, there were no significant correlations between overall looking time difference scores and trials \((r = -.332, p = .165) \) or time to reach habituation \((r = -.346, p = .146) \). In the Poor Cues condition, there were also no significant correlations for trials \((r = .207, p = .394) \) or time to reach habituation \((r = -.016, p = .949) \).) Thus, it does not seem that increased attention during habituation can explain why infants demonstrated learning of the labels in the Good Cues condition but not in the Poor Cues condition or in Experiment 1 when infants had no prior exposure to the labels.

Previous experiments have also shown that despite similar habituation times, infants can display different learning patterns (Graf Estes et al., 2007; MacKenzie et al., 2012; Thiessen, 2007). During habituation, infants encode enough information about the label–object pairings for attention to decline. However, this encoding may be insufficient to detect when a familiar object and a familiar label occur in novel pairings during switch trials. Here, infants in all conditions declined in attention during habituation, but only infants in the Good Cues condition learned enough to reliably detect the switched label–object pairings.

A final key consideration is that the phonotactic context in the Poor Cues condition could have actively inhibited infants’ learning. In these passages, the consonant clusters at the target word onsets and offsets occurred more frequently within English words than across words. This could have obscured the location of the word boundaries, making it difficult to determine the correct phonological sequences (e.g., in the phrase “fang gaffe tine,” gaffe could be heard as [fæŋgæft]/). If this is the case, learning labels with poor phonotactic cues should be even more challenging than learning them with no prior segmentation experience at all. The analyses reported to this point suggest that this is not the case. In both the Poor Cues condition and in Experiment 1, infants displayed no evidence that they learned the labels. We also performed a set of independent-samples \(t \) tests across Experiment 1 (no segmentation cues) and the Poor Cues and Good Cues conditions of Experiment 2. The \(t \) tests showed that the looking time difference scores of infants in Experiment 1 did not differ from those of infants in the Poor Cues condition during Block 1, \(t(35) = 0.23, p = .823, d = 0.07 \), or Block 2, \(t(35) = 1.69, p = .101, d = 0.56 \). Performance in both of these conditions differed significantly from the performance of infants in the Good Cues condition during Block 1: Experiment 1 versus Good Cues, \(t(35) = 2.31, p = .027, d = 0.76 \); Good Cues versus Poor Cues comparison is presented above.

Thus, there is no evidence that hearing words embedded with poor segmentation cues inhibited label learning. Rather, the presence of good phonotactic cues facilitated learning. The findings of Experiment 2 are particularly remarkable because the infants in the Good Cues and Poor Cues conditions had the exact same amount of exposure to the words before they served as object labels. In the presence of language-specific word segmentation cues, infants spontaneously treated the words
differently than when they lacked this information. With the phonotactic cues, infants detected potential meaningful units and associated them with objects.

General discussion

The results of the current experiments indicate that infants can use learning about native language sound patterns to feed word learning. Experiment 1 established a set of labels and objects that 14-month-olds find difficult to associate when the learning environment lacks supplemental support. Experiment 2 used the same labels and objects but provided additional cues for building phonological representations of the labels. When infants heard target words embedded in sentences that contained good phonotactic word boundary cues, they successfully learned the target words as object labels. When infants heard the same target words embedded with poor phonotactic segmentation cues, they did not display any evidence of learning the labels. Simple exposure to the words in fluent speech passages was not sufficient to promote label learning. Across cue conditions, infants heard the target words the same number of times. However, infants required the presence of language-specific word boundary cues to use the experience with listening to the word forms to facilitate object label learning. The findings suggest that these novice word learners took advantage of their native language knowledge to find the words, which then allowed them to associate the words with meanings. The process observed here illustrates how infants build learning from prior learning. Infants detect regularities in their environments and then use this information to support subsequent acquisition of higher level structure.

To establish a baseline for the effects of prior knowledge of native language sounds, Experiment 1 demonstrated conditions under which 14-month-olds failed to learn a pair of novel object labels. The pattern of performance seems to conflict with prior studies that have shown successful learning in 12- to 14-month-olds (MacKenzie et al., 2011, 2012; Werker et al., 1998). However, the finding also highlights that for novice word learners, the process of associating sounds with meanings is not highly stable or robust. Across experiments, variations in objects, words, labeling contexts, testing contexts, referential information, and social information can drive performance toward success or failure (Fennell & Waxman, 2010; Rost & McMurray, 2009, 2010; Thiessen, 2007; Yoshida, Fennell, Swingley, & Werker, 2009). This variability in performance across experiments is informative about the state of the emerging system (Smith & Thelen, 2003; Thelen & Smith, 2006). When learners are developing a new behavior, it is not yet entrenched, so performance can be perturbed. The ability to disrupt or facilitate learning allows for a window on development; it allows us to probe the kinds of information that infants access when they attempt to learn in a task that is challenging.

We investigated how infants use patterns from their linguistic environments to facilitate word learning. In doing so, these experiments link two literatures: studies of word learning that have focused on the acquisition of word meanings and studies of infant speech perception that have focused on early learning about sounds.

The word learning literature points to the influence of many kinds of environmental cues that infants and young children detect and then effectively apply to guide their acquisition of new words. The evidence in this area has focused on the cues that learners use to determine what words refer to. One example of this is the shape bias; detecting patterns in the objects and object names in the environment leads to the development of the shape bias, which helps infants to extend new object names appropriately (Smith et al., 2002). Similarly, young children can use experience with linguistic contexts to interpret whether a new word refers to an object (“This is a dax”), a characteristic (“This is a dax one”), or an action (“It’s daxing”) (Landau, Smith, & Jones, 1992; Yuan, Fisher, & Snedeker, 2012). Experience with the pattern that each object has one (basic level) label seems to be key for developing the principle of mutual exclusivity and using it to map novel names to unnamed objects (Byers-Heinlein & Werker, 2009; Houston-Price, Caloghiris, & Raviglione, 2010). Although not an exhaustive list, these lines of work illustrate ways that infants build new learning on prior learning about their natural environments in order to determine word meanings.

There have also been demonstrations that infants exploit prior experience to support word learning following brief lab-based experiences with word forms. When infants first have the opportunity to use
syllable transitional probability cues to segment words from an artificial language, they can subsequently associate the words with referents (Graf Estes et al., 2007; see also Hay et al., 2011). Without this prior experience, infants do not learn the associations. Experience with cues to lexical categories in an artificial language also promotes word learning. Lany and Saffran (2010, 2011) presented 22-month-olds with auditory experience with two lexical categories that were marked by a phonological cue (monosyllabic vs. bisyllabic words) combined with a distributional cue (each category co-occurred with different words). Experience with the cues to the lexical categories allowed infants to associate them with distinct semantic categories. Thus, even brief experience with statistical cues to structure in a novel language can support infants’ ability to learn new words. The current experiments examined how naturally occurring experience with a statistical cue supports word learning.

The general mechanism behind the shape bias and these other word learning processes is that infants detect statistical regularities in their daily environments, extract consistent patterns, and then use the information to facilitate further learning. This mechanism is not specific to learning word meanings (or even to language acquisition, for that matter). We propose that the current findings emerge from the same kind of scaffolding effect that originates in infants’ detection of statistical regularities in their environments. In this case, infants’ ability to discover patterns in the ambient language affects how they learn about the sounds of words. By 9 months of age, infants can detect patterns in the sounds that occur within words versus across word boundaries, as evidenced by their listening preferences (Mattys & Jusczyk, 2001). The current results indicate that at 14 months of age, infants apply these cues to support the process of associating word forms with their referents. Our findings indicate that infants discover phonotactic word segmentation cues that allow them to extract unfamiliar words from continuous speech and to develop phonological representations of them. Here, the phonological representations were robust enough to allow infants to map them to referents in a task that was otherwise difficult to perform.

Phonotactic patterns may be particularly beneficial to novice word learners, whose ability to link words with referents is fragile. However, for less mature infants, the phonotactic information may be ineffective because the task is beyond their abilities even with phonotactic support. For infants with stronger word learning abilities, phonotactic information may be superfluous; they can readily learn new object names without the segmentation experience. Across development, the weight given to different types of perceptual, referential, and contextual word learning cues changes (Hollich et al., 2000). Similarly, attention to phonotactic cues and other sound-based information may change as infants become stronger and more flexible learners.

One direction for future research will be to investigate developmental changes in how listeners take advantage of phonotactic information to learn and process words. Another consideration for future studies is that the current experiments used a limited stimulus set; there was one set of object labels and one set of phonotactic contexts per label in each condition. Follow-up experiments should examine a broader set of labels and phonotactic contexts to establish the generalizability of the effects we observed. An additional limitation of the current study design that should be addressed in further research is that many infants did not tolerate the labeling task. There was a relatively high dropout rate due to fussiness. Although the dropout rate was similar to the rate in experiments using similar methods (Fennell, Byers-Heinlein, & Werker, 2007; Fennell & Waxman, 2010; Werker, Fennell, Corcoran, & Stager, 2002), the restricted sample may limit how well the current findings apply to the broader population of novice word learners. Using tasks that more infants can complete will allow for stronger, more generalizable conclusions.

By focusing on how experience with the native language sound system affects word learning, the current research contributes to an outstanding issue in the field: Do infants’ precocious speech perception skills carry over to higher level linguistic functions such as building a lexicon (Walley, 1993; Werker & Curtin, 2005)? Previous experiments have suggested that the information infants detect in speech perception tasks (i.e., phoneme distinctions) is not always readily available in word learning tasks (i.e., learning labels that differ by a single phoneme; Stager & Werker, 1997). However, this pattern of results, although reliable and replicable, seems to depend on the nature of the labeling and testing contexts (Fennell, 2012; Fennell & Waxman, 2010; Rost & McMurray, 2009; Werker & Curtin, 2005; Yoshida et al., 2009). Furthermore, other recent experiments have found parallels between infants’ perceptual skills and word learning skills. For example, infants can detect differences
between phoneme sequences that are consistent versus inconsistent with the native language at around 9 months of age (Jusczyk, Friederici, Wessels, Svenkerud, & Jusczyk, 1993; Jusczyk, Luce, & Charles-Luce, 1994). After 1 year, infants also differentiate consistent versus inconsistent sequences in label learning. They successfully learn native language-consistent labels but not inconsistent labels (Graf Estes & Bowen, 2013; Graf Estes, Edwards, & Saffran, 2011; MacKenzie et al., 2012). The results of Experiment 2 provide further support for the notion that early speech perception skills provide a foundation for word learning. Infants used language-specific cues to detect words that then acted as object labels. They successfully used the output of learning about the native language sound system as the input for word learning.

In conclusion, the current findings indicate that infants apply learning about their naturally occurring linguistic environments to facilitate associating sounds with meanings—an essential process in lexical development. Infants can take advantage of prior learning about native language sound patterns to scaffold their emerging word learning skills. More broadly, the current research provides a novel example of a general learning process; infants exploit their early learning to solve new learning challenges.

Acknowledgments

This research was supported by grants to K.G.E. from the National Science Foundation (BCS0847379) and from the National Institute of Child Health and Human Development (HD062755) and the Hellman Foundation. I thank Carolina Bastos, Stephanie Chen-Wu Gluck, and the members of the Language Learning Lab at the University of California, Davis, for their assistance with this research. Thanks also go to Lisa Oakes, Jenny Saffran, Dylan Antovich, and Alexa Romberg for helpful comments and discussion. I also thank the parents who generously contributed their time.

References

